Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments
نویسندگان
چکیده
Microorganisms capable of reducing or oxidizing structural iron (Fe) in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ "i-chip" enrichment strategies were employed. One Fe(III)-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria) and six Fe(II) phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8), Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5), and Actinobacteria (Nocardioides sp. strain in31) were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II)-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II)-oxidizing Nocardioides, and to date only one other Fe(II)-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments.
منابع مشابه
Microbial mineral colonization across a subsurface redox transition zone
This study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II)-oxidizing bacteria (FeOB) would preferentially colonize the Fe(II)-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ) at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by th...
متن کاملIsolation of Phyllosilicate–Iron Redox Cycling Microorganisms from an Illite–Smectite Rich Hydromorphic Soil
The biogeochemistry of phyllosilicate-Fe redox cycling was studied in a Phalaris arundinacea (reed canary grass) dominated redoximorphic soil from Shovelers Sink, a small glacial depression near Madison, WI. The clay size fraction of Shovelers Sink soil accounts for 16% of the dry weight of the soil, yet contributes 74% of total Fe. The dominant mineral in the clay size fraction is mixed layer ...
متن کاملDistribution of microbial biomass and potential for anaerobic respiration in Hanford Site 300 Area subsurface sediment.
Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upp...
متن کاملThe Influence of Phototrophic Biomass on Fe and S Redox Cycling in an Acid Mine Drainage-Impacted System
We examined the effects of organic carbon from oxygenic photosynthetic algal biomass on the redox cycling of Fe and S in an acid mine drainage (AMD)impacted system. Fe(III)-rich sediments from the field site with abundant algae contained fewer Fe(II) oxidizing bacteria and lower rates of Fe(II) oxidation compared to sediments that did not contain abundant algae. The addition of algal biomass to...
متن کاملMicrobial iron-redox cycling in subsurface environments.
In addition to its central role in mediating electron-transfer reactions within all living cells, iron undergoes extracellular redox transformations linked to microbial energy generation through utilization of Fe(II) as a source of chemical energy or Fe(III) as an electron acceptor for anaerobic respiration. These processes permit microbial populations and communities to engage in cyclic couple...
متن کامل